CAD

HANA Heroes Expert Session

Title: Automating SAP Deployments
with Terraform and Ansible
Presenter: Darpan Patel

Proudly presented by SAP HANA Heroes

Kick Off Automated

Project Thunder

Join If you are not a

member so you don’t miss Projee Tuncer OVerven - ANS © e T GOP - SAPE
updates regarding this

topic and many more! Project Thunder

Hyperscaler Readiness

Customer Success
Intelligent Debvery Group

Blog Post on this topic will
be released beginning of

Q2

News & Updat

e SAP BTP tab
A here

contact in News and Event for
n this blog post

https://jam4.sapjam.com/groups/I54pSaFkB4ogPByCzj5ydr/overview_page/P00pqETO8jYIAX75xDZe16

Agenda

Why learn these tools?
Getting Started with Terraform
Getting Started with Ansible

Merging Terraform and Ansible

v
v
v
v
v
=
a
=

‘e -uul

D

SAP Implementations

= Implementation Issues:
= Technical Implementations can become very lengthy
= They are a bottleneck for the project

= |nvolve a very manual process
— Both Provisioning servers and applications

= Qutdated in today’s quick paced and automated world

= How do we make implementations more efficient?

= Automate
— Provisioning Servers
— Resources that attach onto those servers
— The networks they reside in
— OS configurations
— Application Deployments

RED HAT

W Terraform A ANSIBLE

Automation
= Infrastructure as Code . Deploy applications
= Use to Deploy the Hosts for SAP . Install Packages for OS

application servers

Configure your file system
= Database server hosts

Mount Network locations
= Storage

= |nstall SAP HANA
= Networks, VPC’s, Subnets, routers

_ = Any task SWPM can do
= Security Groups, NACL's

= System Copy, System Rename,
Distributed System, Standard
System

Terraform Implementation Considerations

Terraform is logically split into two main parts:

PROVIDERS

= Terraform Core

PROVISIONERS

TERRAFORM CORE

PLUGINS

= Terraform Plugins

= Terraform is Agentless - Statically-compiled binary = Terraform plugins are
) written in GO executable binaries written
= Terraform can be installed on any platform in GO
= Terraform core is the
= Installation Options command line tool - Plugins contain Providers

: and Provisioners
= Entry point for anyone

using terraform = Providers provide a service
such as AWS
= = Resource State
Management

= Terraform Core and Plugins are written in the
GO Language

= Communicates with
plugins

= Terraform uses CRUD (create, read, update,
and delete) APIl's to communicate with
providers

https://learn.hashicorp.com/tutorials/terraform/install-cli
https://learn.hashicorp.com/tutorials/terraform/install-cli

Terraform Execution Flow

= Executing a Terraform Script to provision in
AWS:

= 1 — Execute terraform against AWS.tf

= 2 — Core makes Remote Procedure Call to
Plugin to download AWS Provider and
provide resources to provision

= 3 — Plugin downloads AWS Libraries- ADD
where the request goes

AWS tf

= 4 — AWS Client library translates requests
to API requests

= 5 — APl requests sent to AWS

= 6 — Once provisioning is complete, state
data is logged in terraform.tfstate

terraform.tfstate

10

Terraform Providers

AWS.tf Terraform File:

1

2 terraform {

3 required_providers {

4 aws = { -

5 source = "hashicorp/aws"™
b version = "3.31.8"
7 ¥

s

9 1

18

11 provider "aws"™ {

12 # Configuration options

[y
L

}

Terraform Providers:

To install a provider you must include
provider configuration code into your
terraform files

A list of available providers can be found
here on the terraform website

Each Provider comes with its own set of
documentation describing its resource
types and their arguments

Terraform currently has 70 providers in
their registry

You can create your own provider

11

https://registry.terraform.io/browse/providers

Terraform Resources

= Resources:
Resource Template:

= Resources are the most important

2 [CONFIG ..] element in the Terraform language
3

1 resource "<PROVIDER:> <TYPE>" "<NAME>" {

= They represent some type of
infrastructure object

= virtual networks, compute instances, compute
AWS.tf — Create an EC2 Instance: devices or DNS records.

15 = Terraform is platform dependent

16 resource "aws_instance™ "example™ {

17 ami = "ami-BcB9927662c939F41"]))
18 instance_type = "t2.micro” = Each provider has different requirements
19 kag5 { name = "TESTVM"}

B for parameters

[==

= AWS requires — ami ID, and
Instance_type

Terraform Variables

AWS.if Terraform File with Variables :

= Variables:
15
16 resource "aws_instance" "example” { . :
- i Variables can be used to make your
18 instance_type = var.instanceType terraform scripts re-usable
19 tags { name = var.tags}
= L - Avoid having to hardcode in your
22 parameters by using variables
Variables.tf File : = Easier to Maintain — Instead of
1 variable "amiID"{ maintaining script file, you just need to
2 type = string I I I I
3 default = "ami-8cB9927662c939F41" malntaln Varlables flle
il . .
5 ! = Create Variables File:
& wvariable "instanceType"{ _])
7 type = string = Create a file in the same directory as your
] default = "t2.micro™
5 3 provisioning script and title it variables
148
11 wvariable “Tagsl“{
12 type = string
13 default = "TEST VM"

14}

13

Terraform Best Practices for File Structure

= File Structure:

Example File Structure :

darpan-test:/terraform # tree -1
— dev

— AwWS.tf

— variables.tf

— prod

— AwS.tf =
— variables.tf

— AwS.tf

variables.tf

3 directories, 6 files
darpan-test:/terraform # |

Separate out clusters of Servers

An example would be breaking out your
environments to include DEV, QA, and
PROD

Each environment has its own execution
script — AWS.tf

Can also create groups such as Active
Directory Servers, DNS servers, Printer
Servers, eftc..

= Drawbacks to this:

Every time you upgrade or modify one
AWS.tf, you will need to modify the others

14

Terraform Modules

Example File Structure with Modules :

— dev

— Aws.tf

L— varijables.tf
—— modules

— bw-server

application
Aws.tf
variables

database
AWS.tf
variables

L— s4-server

application
Aws.tf
variables

database
AWS.tf
variables

— prod
AWS.tf
variables.tf

AWS.tf
variables.tf

f

f

f

f

= Modules

Don’t need to update provisioning scripts in
multiple locations

All resource provisioning scripts will be put into the
module

Useful when managing multiple environments with
different types of servers

Modules can be shared to the community

= Use Case

You want to build out another application server
for your S/4 Dev Environment

Update /dev/AWS.tf to include the module
/modules/s4-server/application

To execute — cd into /dev and run: terraform apply

15

https://registry.terraform.io/browse/modules

Ansible Implementation Considerations

Types of Resources in Ansible
= Control Node
= Managed Node
Ansible is Agentless
Installation Options

= Install using OS package Manager
- RHEL
- SUSE

= Install with Python Package Manager pip

Control Node uses ssh to communicate with
Managed Nodes

Ansible Modules/Libraries are written in python

Control Node

Cannot be a Windows
System

Can be a laptop, shared
desktop, or server

RHEL, SUSE, macOS,
Ubuntu, other linux
operating systems

Control Node should be
located on the same
network as Managed
Nodes

Must have python installed,
python 3 is recommended

Managed Node

Can be any operating
system, including Windows

Must have python installed,
python 3 is recommended

17

https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-ansible-on-rhel-centos-or-fedora
https://software.opensuse.org/download.html?project=systemsmanagement&package=ansible
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-ansible-on-rhel-centos-or-fedora

Ansible Execution Flow

= Authentication
= SSH Keys or Passwords
= Hosts File

= Contains the list of Managed
Nodes

= Playbook

= Contain Tasks to execute
against the hosts in Hosts file

18

Ansible Hosts File

= Hosts File

Host file can be written in YAML or INI
format

Managed nodes can use FQDN, Short
Name, or IP Addresses

Group out your Servers for segregation of
environments

Make groups of groups using :children suffix
to make your execution calls more robust

Execute Ansible Playbooks against a server,
a group of servers, and groups of groups of
servers

More Information on Hosts files here

(I L o o N W (Y =S W 5y]

18
11
12
13
14
15
16
17
18
19
28
21
22
e
24
25
26
27
28
29

[sapservers:children]
dev

]
prod

[dev:children]
app_dev
db_dev

[app_dev]
sapappl
sapapp2

[db_dev]
hanadb

[ga:children]

app_qa
dh_q;

[app_qa]
18 . 3o . 300 XX

[db_qa]
18 . 3o . 300 XX

19

https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html#intro-inventory

Ansible Playbook Files

= Playbook Files

- Playbooks are written in YAML format S e
. 3 - : Install SAP Hana Prerequisite Packages for SUSE Linux 15
= You must specify a host or a group of hosts 4 :
. 5 : libgcc sl
to run the play against - . resent
7
8

= Define your task by providing a name,
module and parameters for each task

- : Install SAP Hana Prerequisite Packages for SUSE Linux 15

o

: libstdc++6
: present

e
P = D

= Playbooks define the execution flow of your
Ansible tasks

[y
LJ
I

: Install SAP Hana Prerequisite Packages for SUSE Linux 15

[y
P

: libatomicl
: present

et
o oLn

= Execute Playbook command:

i
-

|

= Ansible-playbook <playbook name>
= Playbook Drawbacks

= Can get messy when you have too many
tasks

Ansible Roles

= Roles

= Provide a clean way to organize your Ansible
scripts and not overpopulating your
playbooks

= Treat roles like functions in programming

= Should perform one task or a group of similar tasks

= Roles are reusable and can be shared to
your team or the

= Role Creation

= In the same directory your playbook can be
found create a folder called roles and
change directory into it

= Run - ansible-galaxy init <Role_Name>

= Folder structure for role is created

New look Playbook:

il - : dev
2 :
3 - { : sap-configure }
4
5
Role task file:
1 -
2
3
4 - : Install SAP Hana Prerequisite Packages for SUSE Linux 15
5 :
6 : libgcc s1
7 : present
8

: Install SAP Hana Prerequisite Packages for SUSE Linux 15

: libstdc++6
: present

: Install SAP Hana Prerequisite Packages for SUSE Linux 15

: libatomicl
: present

21

https://galaxy.ansible.com/search?deprecated=false&keywords=&order_by=-relevance

Ansible Variable Files

= Variable File

Use variables to manage differences
between systems

Prevents you from having to hard code in
your playbook and role files

Create variables with YAML syntax, lists, or
dictionaries

Define variables in playbooks, hosts file,
roles, at the command line, or in separate
vars files

Make all variables in vars file useable in your
playbooks and roles

= Variable Drawbacks

Sensitive variables need to be secured as they are visible
to users

Playbook File calling vars file:

1 - : dev
2 :
3 - fetc/ansible/vars/ansible vars.yml
4 o
5 : "{{ private_key }}"
b
7 -1 : sap-configure }
B
g
Vars File:
il
2 {
3 "private key": "/fetc/fansible/dpid rsa”
4 }
L

22

Ansible Vault

= Vault

= Vault

Encrypt and Decrypt your sensitive files with Ansible

Vault

Before files are encrypted you must provide a
password

When executing playbooks, if an ansible vault

encrypted file exists, you will be prompted for the

vault password

Files are decrypted during runtime only for Ansible to

use in execution

Create multiple vault passwords for encrypting
different sets of files

Encrypt Command

ansible-vault encrypt <file_path1> <file_path2>

Vars file before encryption:

J'I-I“-“aLlJl\.fll—'-|

Variables for Playbook

.,

#Secret
{
H

"private key": "fetc/ansible/dpid rsa"

Vars file after encryption:

(= I s A R I WU I N]

S S e e e e e
D00~ W R WM DD

SIBLE_VAULT;1.1;AES256 =
3133353239663334393164313086131396166666363633333396434656638643463363633656
3936313139636563663361643763346335323634613832320a3833616262613335356361323
326364353639303961353032363466616631636565363763373034353861373930613233623
3535363134366261640a6234306639376362613433363764386232666337353636633831663
643631333939306363316336386366306162643234646361623261613434666236363136346
386230623335663632366365626531613539366339303336613431656663373838303262643
616439653333373262663265333837666332356366393439373162626561313335633433396
393265626437616632626636386163613832656131343838376664383339623236333231543
613432336137623234373230346566393263636239303161306534626237336564366539383
333535656537313537343037393064376664343233623963326538373532306135373366353
643231633064316331313530386437356561656136333336306536373637333137323862326
316438643238643566383263373939353262333165613632353133326438633462316461313
613132666265666466323336626239663430623864636337626332356363626439346138333
663532333435306439663331323838356562383963383833663165353432393138623237383
383836646164316139386237636631313263353330373135633263646634386363353531516
393064346536356565366463336439313534356333366433626530383533386638613966366
34643638383830663433396661636534623665306362653435393936653537643930

23

Ansible File Structure

Example of Ansible File Structure:

darpan-test:/ansible # tree -1

= File Structure -
—— group_vars

= Ansible can be run from anywhere — dev.yml
— prod.yml]
= Bare minimum you need a playbook and hosts file — qa.yml
— sapservers.yml
: 1t - — host_vars
. Grqup Vars. gives you _the ability to associate " 10.47.106. 205y
variables with a specific group of hosts . hanadb. ym1
. . . . — sapappl.yml
= Host Vars gives you the ability to associate variables — hosts
ific h — roles
{0 specific nosts L— sap-configure
L— tasks

L— main.ym]
— sap-configure.yml
— vars

L— ansible_vars.ym]

6 directories, 11 files
darpan-test:/ansible # pwd
/ansible

Use Ansible to Call Terraform

Combining Terraform and Ansible File Structures: sap-configure.yml calls Terraform:
— hosts
— roles) 1 wrrtsshddnsidnidpniisnrddnidsgiddnrdsnrisniisriddniddnidnny
L— sap-configure 5 h . localh
L tasks - hosts: localhost
L— main.yml 3 tasks:
— sap-configure.yml 4 - name: init terraform
— terraform 5 shell: terraform init
e Aws . tf ° apgg:l
I Var'-iab'les.t'F 7 chdir: "fetc/ansible/terratorm/dev
— moduTes 8
L bw-server 9 - name: apply terraform script
application 1a terraform:
Aws.tf 11 project path: "/etc/ansible/terraform/dev"”
variables.tf 12 state: present
database - P
AWS . tF 13 =ridsnfigaiipnrisntdsnideshisghisnridniidnidsngitdniisniisns
variables.tf 14 - hosts: dev
— s4-server 15 vars_files:
application 16 - fansible/vars/ansible_vars.yml
Aws . tf 17 e
iables.tf : " . : .
dataEgg;a 18 ansible ssh_private key file: "{{ private key }}”
AWS.tf 19 roles:
variables.tf 20 - { role: sap-configure }
— prod
Aws.tf
variables.tf
Aws . tf
variables.tf
L— vars

L— ansible_vars.yml

How Ansible Performs SAP Installations

Hdblcm In Batch Mode and SWPM
Unattended:

= Config File needs to be maintained with - _
Config File for SWPM:
parameters used for HANA and S/4 'g i

Installations # Standard system with AS ABAP only: ASCS instance number. Leave empty for default.
NW_CI Instance.ascsInstanceNumber = {{ sap_s4hana_deployment ascs instance nr }}

= You can write a playbook that picks up this

file and if][)l]th it into an hdblcm command # Standard system with AS ABAP only: Virtual host name for the ASCS instance. Leave empty for default.
. NW_CI Instance.ascsVirtualHostname = {{ ansible_hostname }}
or sapinst command

Instance number of the primary application server instance. Leave empty for default.

= No need to reinvent the wheel — download NW_CI_Instance.cilnstanceNumber = {{ sap sdhana_deployment pas instance nr }}
the following ansible roles

= For SWPM, follow SAP Note - to
generate config files

27

https://github.com/redhat-sap/sap-hana-deployment
https://github.com/redhat-sap/sap-s4hana-deployment
https://launchpad.support.sap.com/#/notes/2230669

